Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Viruses ; 15(1)2023 Jan 13.
Article in English | MEDLINE | ID: covidwho-2200881

ABSTRACT

COVID-19 cases caused by new variants of highly mutable SARS-CoV-2 continue to be identified worldwide. Effective control of the spread of new variants can be achieved through targeting of conserved viral epitopes. In this regard, the SARS-CoV-2 nucleocapsid (N) protein, which is much more conserved than the evolutionarily influenced spike protein (S), is a suitable antigen. The recombinant N protein can be considered not only as a screening antigen but also as a basis for the development of next-generation COVID-19 vaccines, but little is known about induction of antibodies against the N protein via different SARS-CoV-2 variants. In addition, it is important to understand how antibodies produced against the antigen of one variant can react with the N proteins of other variants. Here, we used recombinant N proteins from five SARS-CoV-2 strains to investigate their immunogenicity and antigenicity in a mouse model and to obtain and characterize a panel of hybridoma-derived monoclonal anti-N antibodies. We also analyzed the variable epitopes of the N protein that are potentially involved in differential recognition of antiviral antibodies. These results will further deepen our knowledge of the cross-reactivity of the humoral immune response in COVID-19.


Subject(s)
COVID-19 , SARS-CoV-2 , Mice , Animals , Humans , Nucleocapsid Proteins/genetics , COVID-19/prevention & control , COVID-19 Vaccines , Nucleocapsid/metabolism , Epitopes/genetics , Recombinant Proteins/genetics , Antibodies, Viral , Spike Glycoprotein, Coronavirus
2.
Viruses ; 14(2)2022 02 03.
Article in English | MEDLINE | ID: covidwho-1674820

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to have a significant impact on global public health. Multiple mechanisms for SARS-CoV-2 cell entry have been described; however, the role of transferrin receptor 1 (TfR1) in SARS-CoV-2 infection has received little attention. We used ferristatin II to induce the degradation of TfR1 on the surface of Vero cells and to study the consequences of such treatment on the viability of the cells and the replication of SARS-CoV-2. We demonstrated that ferristatin II is non-toxic for Vero cells in concentrations up to 400 µM. According to confocal microscopy data, the distribution of the labeled transferrin and receptor-binding domain (RBD) of Spike protein is significantly affected by the 18h pretreatment with 100 µM ferristatin II in culture medium. The uptake of RBD protein is nearly fully inhibited by ferristatin II treatment, although this protein remains bound on the cell surface. The findings were well confirmed by the significant inhibition of the SARS-CoV-2 infection of Vero cells by ferristatin II with IC50 values of 27 µM (for Wuhan D614G virus) and 40 µM (for Delta virus). A significant reduction in the infectious titer of the Omicron SARS-CoV-2 variant was noted at a ferristatin II concentration as low as 6.25 µM. We hypothesize that ferristatin II blocks the TfR1-mediated SARS-CoV-2 host cell entry; however, further studies are needed to elucidate the full mechanisms of this virus inhibition, including the effect of ferristatin II on other SARS-CoV-2 receptors, such as ACE2, Neuropilin-1 and CD147. The inhibition of viral entry by targeting the receptor on the host cells, rather than the viral mutation-prone protein, is a promising COVID-19 therapeutic strategy.


Subject(s)
Biphenyl Compounds/pharmacology , SARS-CoV-2/drug effects , Sulfones/pharmacology , Virus Internalization/drug effects , Virus Replication/drug effects , Animals , Chlorocebus aethiops , Inhibitory Concentration 50 , Protein Binding , Protein Domains , Receptors, Transferrin/antagonists & inhibitors , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL